Euler’s partition theorem and the combinatorics of `-sequences
نویسندگان
چکیده
Euler’s partition theorem states that the number of partitions of an integer N into odd parts is equal to the number of partitions of N in which the ratio of successive parts is greater than 1. It was shown by Bousquet-Mélou and Eriksson in [9] that a similar result holds when “odd parts” is replaced by “parts that are sums of successive terms of an `-sequence” and the ratio “1” is replaced by a root of the characteristic polynomial of the `-sequence. This generalization of Euler’s theorem is intrinsically different from the many others that have appeared, as it involves a family of partitions constrained by the ratio of successive parts. In this paper, we provide a surprisingly simple bijection for this result, a question suggested by Richard Stanley. In fact, we give a parametrized family of bijections, that include, as special cases, Sylvester’s bijection and a bijection for the lecture hall theorem. We introduce Sylvester diagrams as a way to visualize these bijections and deduce their properties. In proving the bijections, we uncover the intrinsic role played by the combinatorics of `sequences and use this structure to give a combinatorial charaterization of the partitions defined by the ratio constraint. Several open questions suggested by this work are described.
منابع مشابه
Euler's partition theorem and the combinatorics of l-sequences
Euler’s partition theorem says that the number of ways to partition an integer into odd parts is the same as the number of ways to partition it into distinct parts. We show how the combinatorics of “l-sequences” gives rise not only to a generalization of Euler’s theorem (discovered by Bousquet-Melou and Eriksson in 1997), but also to a generalization of Sylvester’s bijective proof. This is join...
متن کاملGeneralizing the combinatorics of binomial coefficients via l-nomials
An l-sequence is defined by an = lan−1 − an−2, with initial conditions a0 = 0, a1 = 1. These l-sequences play a remarkable role in partition theory, allowing l-generalizations of the Lecture Hall Theorem [7, 8] and Euler’s Partition Theorem [8, 26]. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The l-seq...
متن کاملEuler's Partition Theorem
Euler’s Partition Theorem states that the number of partitions with only distinct parts is equal to the number of partitions with only odd parts. The combinatorial proof follows John Harrison’s pre-existing HOL Light formalization [1]. To understand the rough idea of the proof, I read the lecture notes of the MIT course 18.312 on Algebraic Combinatorics [2] by Gregg Musiker. This theorem is the...
متن کاملGeneralizing the Combinatorics of Binomial Coefficients via !-nomials
An !-sequence is defined by an = !an−1 − an−2, with initial conditions a0 = 0, a1 = 1. These !-sequences play a remarkable role in partition theory, allowing !generalizations of the Lecture Hall Theorem and Euler’s Partition Theorem. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The !-sequence gives rise...
متن کاملEuler's Partition Theorem with Upper Bounds on Multiplicities
We show that the number of partitions of n with alternating sum k such that the multiplicity of each part is bounded by 2m + 1 equals the number of partitions of n with k odd parts such that the multiplicity of each even part is bounded by m. The first proof relies on two formulas with two parameters that are related to the four-parameter formulas of Boulet. We also give a combinatorial proof o...
متن کامل